Finite State Machine Patterns

Sherif M. Yacoub; Hany H. Ammar

Computer Science and Electrical Engineering Department

West Virginia University, Morgantown

West Virginia, WV26506

Introduction

Finite state machines (FSM) are widely used in many reactive systems to describe the dynamic behavior of an entity based on its state. The theoretical concepts of FSMs and an entity's specification, in terms of state transition diagrams, have long been used. This paper presents a FSM pattern language that addresses several recurring design problems in implementing a state machine in an object oriented design. A basic design pattern for finite state machines is presented, its design evolves from the general understanding of state machines functionality. Then the basic pattern is extended to support solutions to several design problems that commonly challenge system designers. These design decisions include state-transition mechanisms, design structure, state-instantiation techniques, and the machine type. Since finite state machines are frequently applicable to areas of concurrent and real-time software, thus it is useful for the system designer to consult a catalog of classified state machine patterns. The pattern language, presented in here, covers the three-layer FSM pattern by Robert Martin [Martin95] and extend the set of patterns described by Paul Dyson and Bruce Anderson [Dyson+98]. However, discussion on nested and concurrent states (i.e. statecharts) will not be included [Yacoub+98].

The following section gives an overview on the new pattern language and its relationship to other patterns of state. A pattern roadmap is presented to illustrate the semantics of the relationships between the patterns; how they co-exist or contradict. The following section describes a turnstyle coin machine example adopted from [Martin95] which will be used through out our discussion. The rest of the paper describes the state machine patterns themselves, and how the example is redesigned as patterns of the pattern language are applied.

Patterns Roadmap

The set of patterns presented here constitutes a pattern language of finite-state machines. Figure (1) shows the classification and describes how they are related to each other. The patterns are classified according to the machine type (Meally, Moore, or Hybrid), the design structure (Layered or Interface Organization), exposure of the entity's internal state (Exposed or Encapsulated), and the instantiation technique of state objects (Static or Dynamic).

The extend symbol(we used the UML inheritance symbol) shows that a pattern extends another by providing a solution to another design problem. The double-headed arrow, with "X" label, indicates that only one of the patterns will appear in the design because they are contradicting from their motivation or solution facets. The dotted arrow shows that one pattern motivates (leads to) the use of another, the arrowhead shows the direction of motivation. A labeled single-headed solid arrow indicates the classification according to a certain design decision.

The basic finite state machine pattern (Basic FSM) is an extension of the State pattern of Erich Gamma et al.[Gamma+95], also referred to as State Object [Dyson+98], it adds implementation of the state transition diagram specifications in terms of actions, events, and a state transition mechanism. The Basic FSM is classified, according to the state transition mechanism, as: Owner Driven Transitions and State Driven Transitions which are in tension with each other.

Figure 1 : Relationships between State Machine Patterns,
 underlined patterns are those addressed in this work, shaded ones are not

For maintainability purposes, the Basic FSM design can be structured into Layered Organization and Interface Organization. The Layered Organization splits the behavior and the logic transitions so that the machine can be easily maintained and comprehended. The Interface Organization allows the design to be embedded into the overall application design and facilitates communication between other entities and the machine design.

According to the mechanism of producing outputs of a finite state machine; i.e. machine type[Roth75], the Basic FSM is extend into Meally, Moore or Hybrid to describe whether the outputs are dependent on the entity's current state only or dependent on the events as well.

The entity described by a finite state machine has a particular state at a given time. The current state of the entity can be exposed to other application entities to allow direct invocation of the state class methods; i.e. Exposed State. It can also be encapsulated inside the entity, and no access is permitted from other application entities, i.e. Encapsulated State. You will only use one of these two patterns by choosing either to expose the entity's current state or prevent access to it.

The Basic FSM considers a state class for each state of the entity, thus you would need a mechanism to instantiate the states objects. State instantiation can be either static or dynamic. In Static State Instantiation, all the state objects are created at the initialization phase, while in the Dynamic State Instantiation the states are created dynamically during run time. Only one of the two patterns will be incorporated in your state machine design, depending on the number of states, the required response time on state transitions, and the availability of memory as discussed later.

Usage of one pattern may lead to usage of another. If you decide to use the Encapsulated State thus you will need to secure access to the state object, therefore you may use an Owner-Driven Transitions as shown later. Usage of Interface Organization leads to applying a State Driven Transitions and vice versa, because moving the state transition logic to the states is a step in simplifying the entity's interface to other application entities.

The State Object, Owner-Driven Transition, and Exposed State patterns are discussed by Paul Dyson et al. [Dyson+98], Robert Martin [Martin95] discussed the Static Instantiation, thus we will not discuss them further (shaded ellipses in figure 1). Appendix (A) summarizes the patterns as problem/solution pairs and gives references to those that are addressed in other literature.

Example

We will consider applying the state machine pattern language to the turnstyle coin machine example described by Robert Martin [Martin95] in the three level FSM. Figure (2) summarizes the machine specifications using a state transition diagram.

Figure 2 Example: The state transition diagram of a coin machine

The machine starts in a locked state (Locked). When a coin is detected (Coin), the machine changes to the unlocked state (UnLocked) and open the turnstyle gate for the person to pass. When the machine detects that a person has passed through (Pass) it turns back to the locked state. If a person attempts to pass while the machine is locked, an alarm is generated. If a coin is inserted while the machine is unlocked, a (Thankyou) message is displayed. When the machine fails in opening or closing the gate, a failure event (Failed) is generated and the machine enters the broken state (Broken). When the repair person fixes the machine, the fixed event (Fixed) is generated and the machine returns to the locked state.

A direct traditional implementation of the example in an object-oriented design would use a class called CoinMachine and keep track of the entity’s state as an internal member attribute of the class. For each event received by the machine class a conditional check would be implemented to act according to the current present state. For example, the processing of the coin event would differ if the machine is locked or unlocked. The person would be allowed to pass (if it is locked) or the Thankyou message would be display (if it is unlocked). A sample implementation would look like:

enum State = { Locked, UnLocked, Failed };

class Coin_Machine

{
State CurrentState;

void coin()

{ switch(CurrentState) {

case Broken : // Display out of order message

case Locked : // Unlock the machine's gate

---- };

}

...

};

The above example will be redesigned using the patterns presented in the rest of this paper.

Basic FSM

Context

Your application contains an entity whose behavior depends on its state. The entity's state changes according to events in the system and the state transitions are determined from the entity specification.

Problem

How can you implement the behavior of the entity in your design?

Forces

· Understandability of the design: The traditional approach of using one class is easy to implement, but you will have to replicate state checking statements in the methods of that class because you cannot make the entity take any actions unless it is in a correct state. This will make the class methods look cumbersome and will not be easily understood by other application designers.

· Traceability from specification into implementation: The specification of an entity’s behavior is normally described in terms of a state transition diagrams (STD) as that shown in figure (2). STDs clearly distinguish the states, the events, and the actions of an entity behavior as related to the application environment. The implementation of the behavior should possess the same characteristics to ease the traceability of the specification to implementation.

· Flexibility and Extensibility: Implementation of state machines using a single class or tabular implementation would localize the behavior description in one implementation unit. However, this would limit the extensibility of the design. A good model would imitate the behavior of the entity as related to the application environment. Figure (3) shows the behavior to be mapped in the design model.

Figure 3 The entity behavior in an application environment

Solution

Implement the entity's behavior using a design model that distinguishes the Entity, its States, Events, State Transitions, and Actions.

Structure

Figure 4 Structure of the Basic FSM pattern

· Construct an abstract state class AState which contains static methods implementing the actions taken by all states of the entity.

· Have all the possible concrete classes inherit from the abstract class. Create virtual methods for all possible events in the AState class. The concrete classes implement these methods as specified for the behavior of the entity in each state and invoke of the actions that affects the application environment.

· Create a class for your entity that contains a current state of type AState. Delegate all events received by the entity to the current state using the Entity_State reference. Choose a state transition mechanism, State-Driven or Owner-Driven Transitions.

Example Resolved

How do you use the basic FSM pattern to implement the coin machine behavior?

1. Identify and create the concrete state classes Locked, Unlocked and Broken
2. For each concrete state class, implement the event methods: Coin method for coin insertion, Pass method for person passage, a Failed method for machine failure and a Fixed method after being fixed.

All the events are virtual methods in the abstract class AState and are implemented on each state accordingly. You need not implement all events in every state only those which are identified from the state diagram, for example, the Pass event need not be implemented in the Broken state of the machine.

3. Implement static methods for all possible actions in the AState class. The specification shows that the following actions are taken by the state machine in various states: Unlock method allows a person to pass, Lock prevents a person from passing, a method to display a Thankyou message, another to give an alarm Alarm, display an out-of-order message Outoforder, and Inorder method when the machine is repaired.

Figure (5) shows the class diagram of the example using the Unified Modeling Language [UML98].

Figure 5 Coin machine resolved using Basic FSM pattern

Consequences

· The design is understandable because the pattern maps the elements thought of and described in the STD to classes and methods in an OO design and hence eases the traceability from the STD (figure 2) into design (figure 4). For example, the coin insertion event is mapped to coin methods implemented in each state to give particular implementation according to the current state.

· The model of interaction of an entity with the environment, in terms of actions and events, is mapped to methods implementation in OOD designs which gives an implemented image of the practical model.

· The model is flexible to the addition of new states as well as other events. However as the number of states increases, the design becomes more complex because a state class would to be required for each state.

Related Patterns

The Basic FSM should possess a state transition mechanism which could be Owner-Driven Transitions [Dyson+98] or State-Driven Transitions.

State-Driven Transitions

Context

You are using the Basic FSM. You need to specify a state-transition mechanism to complete the entity's behavior implementation of the Basic FSM.

Problem

How would you implement the state transition logic but yet keep the entity class simple?

Forces

· Reusability of state classes versus complexity of the entity: Since the entity holds a reference to its current state class, then you can intuitively implement the state transition inside your entity. This has a disadvantage of increasing the complexity of the entity because you would implement every condition that combines the current state and the event that causes state transitions in the entity class itself. But it has the advantage of reusing the state classes. However, you would want the entity implementation to be simple that is why you first chose to use a state machine pattern and delegate the event processing to the current active state class.

· Concatenating the event processing: The entity state delegates the event processing to its current state. If you implement the state transition in the entity, then you have split the processing of the event into two, one for the state transition in the entity and the other for the event processing and action activation in the state class. You would rather delegate the state transition logic to the current state instead and have one unified processing for events.

Solution

Delegate the state transition logic to the state classes, make each state knowledgeable of the next upcoming states and have the concrete states of the entity initiate the transition from self to the new state.

Structure

Figure 6 Structure of the State-Driven Transition pattern

· Use the pointer to self NextStates in the abstract class AState to provide generic pointers to upcoming states.

· The Entity_Ref is added to point to the coin machine entity and use the set_entity_state to change its current state. The concrete states have to know their entity. Thus, create a static pointer in the abstract class AState to be shared by all concrete states and accessible via a static method for state changes that can be invoked from any concrete state class. The entity current state has to be exposed to the state change mechanism encapsulated in the AState
· A variation of the solution would be to modify each event method to return the state for which the entity should change or return itself in case of no transition. This would remove the circular reference between the Entity and the AState classes, however you have to update the current state of the entity after each event delegation. The first solution is assumed for the rest of the patterns.

Example Resolved

So, how can you use the pattern to solve the following problem: you don't want the Coin_Machine class to know about the transitions from one state to another; it just dispatches the events to the current state object. Make each state knowledgeable of the next coming state; for example the Broken class has pointers to the Locked class. From the specification of the problem (STD in figure 2), you identify the transitions from source states to destination states, and in the implementation of the event causing the transition in the source state, call the set_entity_state with the destination state as an argument. For example, in the implementation of the Fixed event, the entity’s state is changed by calling set_entity_state(Locked).

Figure 7 Coin machine resolved using State-Driven Transition

Consequences

· The state driven transition simplified the coin machine class implementation as it delegates the event processing to the concrete state class. However, it added the burden to the state classes which requires more instantiation and declaration efforts to ensure that each concrete state class points correctly to the next states.

· All the processing related to an event is contained in the event method implementation of the state classes, this localization is important for good maintainability of the event processing.

Related Patterns

The State-Driven Transition is in conflict with the Owner-Driven Transition, only one state transition mechanism should be used in the design.

Since we have chosen the implementation using an Entity's reference in the abstract state class AState, thus the State Driven Transition is also in conflict with the Encapsulated State as discussed later.

Interface Organization

Context

You are using the Basic FSM to implement the behavior of an entity.

Problem

How can other application entities communicate and interface to your entity?

Forces

· Interface-centric Design: Your entity may not be a standalone design but rather it would be embedded in an application. When you embed the entity behavior design in the overall application design, you would think of the way other application entities interact with the entity and whether they would keep references to the entity only or they can have access to its state classes. Therefore, you want to define an interface of the entity to interact with.

· Simple interfaces versus delegation and state class complexity: To simplify the interfaces of the entity behavior design, you would consider decoupling the entity interface and the states transition logic and behavior. This would necessitate delegating all processing to the state classes which makes these classes more complex, but on the other hand leaves the design with a simple interface to interact with. Then the interface role will be receiving events and dispatching them to its state-implemented behavior.

Solution

Encapsulate the transition logic in the states and hide it from the entity interface i.e. use a state-driven transition mechanism. Design the FSM to distinguish the interface that receives events and the states that handle events, invoke actions, and maintain the correct current state of the entity.

Structure

Figure 8 Structure of the Interface Organization Pattern

Example Resolved

Figure 9 Coin machine resolved using Interfaced Organization

In the coin machine example, you create a CoinMachine_Interface class and an Event_Handler method to handle and dispatch events. The state transitions are implemented as state-driven FSM. The CoinMachine_Interface class acts as interface to the logic encapsulated in the design. The interface knows which state the entity is currently in and so, it handles the incoming events and invokes the appropriate state event method. The Event_Handler receives events from the application environment and calls the state implementation of the event accordingly.

Consequences

Using Entity_Interface class clarifies the interaction of the entity with the other classes of the application and hence separates of the interface and the actual logic and implementation of the state machine.

Related Patterns

The Interface Organization motivates the designer to use State-Driven Transition to simplify the tasks required from the interface by delegating the state transition logic to the states themselves.

Layered Organization

Context

You are using the Basic FSM to implement the behavior of an entity.

Problem

How can you make your design maintainable, easily readable and eligible for reuse?

Forces

· Understandability of the design : When you use the Basic FSM to describe the behavior of the entity, you find that the events and the actions are all defined in the AState class. For example, the AState class in the coin machine contains a large set of methods, this often occurs when you try to simplify the entity's interface and encapsulate the actions, events and state transitions in the state classes, which makes them more complex even in a simple example as the coin machine.

· Maintainability of the application: Earlier figure (3) showed that the interaction of the entity with the environment describes its behavior as events received by the entity and actions taken by it, but you cannot clearly distinguish this behavior in the Basic FSM because both are defined in the abstract state class. This impedes the maintainability of the design because you will hardly distinguish the events and actions, and add new ones. Therefore, you would rather separate the events and the actions in different design layer; i.e. the entity's behavior layer.

Solution

Organize your design in a layered structure that de-couples the logic of states transition from the entity's behavior defined in terms of actions and events

Structure

Figure 10 Structure of Layered Organization

The structure has three layers:

· The Behavior layer: The behavior of the state machine is described as Actions and Events.

· The Interface layer: This layer has the interface of the pattern that reacts to external events and calls the attached state to behave accordingly.

· The States layer: This layer describes the concrete states of the machine.

The Event class contains all events that occur in the environment and the FSM responds to. It is an abstract class with virtual method declaration; the response to each event will differ according to the current state, thus each concrete state will implement the adequate functionality for that particular event. The Actions class contains all the methods that can be executed in the state machine and will affect the application environment or invoke another event. These actions describe the outputs of the state machine called by event methods in the concrete classes. In many cases, you will have one implementation of actions used by several classes.

Multiple inheritance from Events and Actions compose the behavior of the machine such that any concrete state class encapsulate the behavior specification.

Example Resolved

In the coin machine example, the events are distinguished as Coin, Pass, Failed and Fixed methods. The possible actions are Lock, Unlock, and Thankyou. When the layered solution is used and the events and action classes will contain these methods.

Figure 11 Coin machine resolved using Layered Organization

Consequences

· So, how does this structure facilitate the maintainability of the design? Assume that the designer will change the implementation of the Lock method due to installation of new locking mechanism. Instead of getting lost in large number of methods, he can easily consult the layered organization design for Lock method in the Action class and modify it.

· The structure of the machine separates actions, events and state transition that eases its maintenance and reuse. The multiple inheritance followed by several single inheritances shows a three-layer architecture that simplifies the state machine design.

Meally

Context

You are describing output actions of the machine and when to produce them. The requirements specify that the outputs should only be produced in response to specific events depending on the entity's state.

Problem

How do you activate the FSM outputs?

Forces

· Explicit generation of outputs on an event/state combination. You want the actions taken by the entity to be associated with the entity's present state and the current inputs affecting it [Roth75]. For example, the coin machine should produce a ThankYou message if a coin is inserted and it is in the UnLocked state, which is an action associated with the event Coin and the state UnLocked. In a design context, the inputs are those events occurring in the applications domain, thus you will need to associate the activation of outputs with the event handling in each state class.

Solution

Let the states produce the outputs in response to events. In each concrete state, implement the calls to the necessary action methods from the concrete method implementation of the events.

Example Resolved

In a coin machine, a Thankyou message will appear each time the machine is unlocked and a coin is inserted, and similarly other event/output pairs as specified in the following Meally version specification:

Figure 12 A Meally machine example

As an example, in the event handling of Failed in class Unlocked, a call to Outoforder will be implemented as follows:

Void Unlocked::Failed() { Outoforder(); //

// The Outputs associated with input event "Failed” in state “Unlocked” }

Consequences

Whenever an event is required to produce an output, the output actions can be called from inside the event method of that specific state, this associates the outputs with the event/state combination.

Related Patterns

The Moore and Hybrid patterns are alternatives to generate the finite state machine outputs.

Moore

Context

You are using a finite state machine. You have identified the set of outputs (actions) that the machine produces. The machine produces these outputs depending on its current state only.

Problem

How do you activate the state machine outputs?

Forces

· Avoiding code replication as the number of states increases: You can consider applying the Meally pattern to implement the calls to the outputs; but then you find that you are replicating calls to these output methods. This is because you want to produce the output for the machine in a given state and thus you will have to check all the state entry conditions from other states and add the calls to the output method in each one of them. For example, if a warning lamp is required to be lit on each time the coin machine is in the Broken state, thus you will have to call the output routine to light on the lamp in two situations, one in the Failed event of the Locked state and the other in the Failed event in the UnLocked state. This will have many calls to the output method which increases as the number of state entry increases.

· Maintainability of the design: You are calling outputs associated with being in a state from the event methods of other states. Therefore, you would rather associate the actions taken by the entity with the entity's present state only [Roth75]. In a design context, this is translated as producing the outputs on entering the state, and hence you don't have to worry about calling outputs from the event methods of other states. Thus, you can easily maintain the outputs of a particular state.

Solution

Create an output method for each concrete state, implement the calls to the required actions in the output method, and make the state transition mechanism call an output method of the next upcoming state. In a State-Driven Transition, the machine changes state by calling the set_entity_state method. Thus, a method called Output() is added to the previous design, which is specific for each state and is called by the set_entity_state routine using the new state as the caller. In an Owner-Driven Transition, the output method will be invoked from the owner after each transition condition is satisfied.

Example Resolved

Assume an example of the state-driven transition. For instance, in our example, a lamp will be turned on whenever the machine is broken and off whenever it is operating in either locked or unlocked state. A Moore machine version specification is shown in figure (13).

Figure 13 A Moore machine example

Thus the Output() method of the Locked and Unlocked states will set the lamp off , and the Output() method of the Broken state will turn it on. The call to the Output() method will be invoked as follows:

AState::set_entity_state(AState* New_State){

New_State->Output(); // Call the output of the upcoming state }

Figure (14) shows the design using a Moore FSM.

Figure 14 Coin machine resolved using the Moore

Consequences

The output method of the state class produces all the actions associated with that particular state and hence provides a focal method for maintaining these outputs.

Related Patterns

The Meally and Hybrid patterns are alternatives to generate the finite state machine outputs.

Hybrid

Context

You are using a finite state machine pattern. The machine produces some outputs in response to events and some other outputs are associated with the entity's state.

Problem

How do you activate the state machine outputs?

Forces

· FSMs can be a combination of Meally and Moore: When you consider using a Meally machine, you will find that some outputs are dependent on the states only, however, you cannot use a pure Moore machine because some other outputs are dependent on the events response. But does the implementation of a Meally machine contradict that of a Moore one? As discussed in their solution sections, they are not. Therefore, you can use a Hybrid machine where some actions taken by the entity are associated with the entity's present state only (A Moore behavior), and some other actions are constricted by both the entity's state and an event in the application (A Meally behavior).

Solution

Use a combination of the Meally and Moore FSM, the pattern solutions provided in each of them are not contradicting and in fact can be used together.

Example Resolved

In the coin machine example, it is desired that the Lamp output to be associated with the states and the Thankyou message is generated only on the Coin insertion event while in the unlocked state. Thus, in the event handling of Failed in class Unlocked, the call to Outoforder method is placed as shown in the Meally pattern and you will also add the Output() method which will be called by the set_entity_state method using the new state as the caller. The Output() method of the Locked and Unlocked states will set the lamp off , and the Output() method of the Broken state will turn it on as explained in the Moore pattern.

Related Patterns

The Meally and Moore patterns are parts of the solution of the Hybrid pattern.

Encapsulated State

Context

You are using a finite state machine. The sequence of state changes is defined in the entity's specification.

Problem

How can you ensure no state changes are enforced to your entity?

Forces

· State transitions should not be forgeable: Paul Dyson et al. [Dyson+98] discussed the exposed state pattern that allows other application entities to access and retrieve the entity's state. This was shown of benefit to prevent the owning class from having large number of methods that are state-specific and state-dependent, but this allows other application entities to know about the entity's state and can possibly change it. This might contradict with your desire to keep the states known to the entity only, a situation that often occurs for safety purposes. This arises when the specification of the entity's behavior necessitates the sequence of state transitions are to follow the causes(events) only. For example, in an automated train control system, you want to open the train's door if and only if the train has stopped, thus you cannot expose the train state because an external entity can accidentally inject an event causing doors to open.

Solution

Encapsulate the current state inside the entity itself and keep the state reference as a private attribute. In our implementation, only the entity itself can change its state by handling the events causing the state change but still delegate the behavior to the current state. Thus the Owner-Driven Transition [Dyson+98] would be used and the concrete state reference should be private or protected. However, you can also use State-Driven Transition, but in this case, the implementation of the methods should return a reference to the new state instead of having the abstract state class refer to the entity interface.

Example Resolved

In the coin machine example, the Entity_State is declared as protected, and the event handler will not only delegate the handling to the concrete state implementation but also changes the reference to the new concrete state.

Related Patterns

The Encapsulated State pattern is in tension with the Exposed State [Dyson+98].

Dynamic State Instantiation

Context

You are using a finite state machine pattern to implement your entity's behavior. The application in which you are using the entity is large and the entity has many states.

Problem

How do you instantiate the states in your application?

Forces

· Limited availability of memory versus performance: You can statically instantiate all the states of the entity at the initialization phase as described in the three level machine by Robert Martin [Martin95], but since the number of states is enormous in large applications, this will consume large memory space thus decreasing the availability of free memory. Therefore, it is preferable to keep few instances of the states loaded at a time such as the current state and the possible upcoming states. This would slow down the state transition process as execution time would be required to create and delete state objects. However, the number of states kept loaded is small which would occupy small memory size.

Solution

Upon state transitions, load the upcoming state and unload the current state then update the entity’s state with the new one. This design decision has several implementations depending on the selected state-transition technique of the machine. As an example, when each state is knowledgeable of the next upcoming state, i.e the State-Driven Transitions, let the old state create the next state object and the invocation of the state change method in the entity deletes the previous state.

Example Resolved

In the coin machine example, if required to dynamically instantiate the states*, you will add the two methods CreateUpcomingStates and DeleteUpcomingStates which are called from an UpdateState method of the coin machine as follows:

void Coin_Machine::UpdateState(AState* New_State){

 Entity_State->DeleteUpcomingStates(New_State);

 delete Entity_State;

 Entity_State = New_State;

 Entity_State->CreateUpcomingStates();};

Figure 15 Coin machine resolved using Dynamic State Instantiation

These two methods are implemented for each concrete state to create and delete its NextStates. For example, the Locked state in our example will the following implementations:

void Locked::DeleteUpcomingStates(AState* CurrentState)

 { for(int I =0; I < Num_States; I++)

{ if(CurrentState != NextStates[I])

 delete NextStates[I]; }

delete NextStates;
 }

void Locked::CreateUpcomingStates()

{ Num_States =0 ;

 NextStates = new AState*[2];

 NextStates[Num_States] = new Broken(); Num_States++;

 NextStates[Num_States] = new Unlocked(); Num_States++; }

Consequences

The dynamic instantiation mechanism has the advantage of keeping few state objects loaded at a time, however it has a drawback of slowing down the state transition operation, because you delete the previous states and create objects for the upcoming states. This makes the dynamic instantiation pattern not applicable for real time systems and hence static instantiation is recommended.

Related Patterns

The Static State Instantiation is an alternative to Dynamic State Instantiation to instantiate the state objects during the entity initialization.

Known Uses

Finite state machines are widely used in many reactive systems, their design represents a general problem to be addressed by system designers. They are often used in communication systems in which the status of the link between two or more communicating entities limits the behavior of the above application layers. FSMs are widely used in control systems such as motion control system of automated trains, elevators control, and automated train door control. Erich Gamma et al.[Gamma+95] have pointed some known uses in graphical user interfaces. Paul Dyson et al. [Dyson+98] have also pointed out their usage in library applications. Automated Teller Machines are one of the most known and frequently used illustrative examples for an application whose state plays a major role in the flow of operations.

Acknowledgement

We would like to thank Andreas Rueping, who was our EuroPLoP'98 shepherd, for his valuable comments and feedback which helped us to identify the exact problem/solution pairs in the work and to sharpen various sections of the patterns. We are also grateful to Wolfgang Keller for his support and comments during the EuroPLoP'98 pattern writing workshop.

References

[Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, “Design Patterns: Elements of Reusable Object-Oriented Software” Addison-Wesley 1995

[Dyson+98] Paul Dyson and Bruce Anderson, "State Patterns". In Robert Martin, Dirk Riehle, and Frank Buschmann (edt.) "Pattern Languages of Program Design 3", Addison Wesely Longman Inc 1998, chapter 9, pp125

[Roth75] Charles Roth, "Fundamentals of Logic design", P203, West Publishing Co. 1975

[UML98] UML Resource Center. http://www.rational.com/uml/documentation

[Martin95] Robert Martin, "THREE-LEVEL FSM". In Jim Coplien, Douglas Schmidt, (edt.), Pattern Languages of Program Design. Addison-Wesely,1995, chapter 19, pp383

[Yacoub+98] Yacoub, S., and H. Ammar, "A Pattern Language of Statechart", in the Proceedings of Fifth Annual Conference on the Pattern Languages of Programs, PLoP'98, Allerton Park, Illinois, August 1998

Appendix (A) : Summary of Finite State Machine Patterns

Pattern Name
Problem
Solution
Ref.

State Object
How can you get different behavior from an entity if it differs according to the entity's state?
Create states classes for the entity, describe its behavior in each state, attach a state to the entity and delegate the action from the entity to its current state.
[Gamma +95]

[Dyson+98]

Basic FSM
Your entity's state changes according to events in the system. The state transitions are determined from the entity specification. How can you implement the entity behavior in your design?
Use the state object pattern and add state transitions mechanisms in response to state transition events.

FSM pattern = State Object Pattern + State Transition Mechanism
[Martin95]

[Dyson+98]
*

State-Transition
State-Driven Transition
How would you implement the state transition logic but yet keep the entity class simple?
Have the states of the entity initiate the transition from self to the new state in response to the state-transition event.
[Dyson+98]
*

Owner-Driven Transition
You want your states to be simple and shareable with other entities and you want the entity to have control on its current state. How can you achieve this?
Make the entity respond to the events causing the state transitions and encapsulate the transition logic in the entity
[Dyson+98]
[Martin95]

Structure
Layered Organiza-tion
You are using a FSM pattern, how can you make your design maintainable, easily readable and eligible for reuse?
Organize your design in a layered structure that de-couples the logic of state-transition from the entity's behavior defined in terms of actions and events
[Martin95]

*

Interface Organiza-tion
How can other application entities communicate and interface to an entity whose behavior is described by a finite state machine?
Encapsulate the states classes and state-transition logic inside the machine and provide a simple interface to other application entities that receives events and dispatches them to the current state.
*

Machine Type
Meally
How do you activate the FSM outputs if they should be produced at specific events while the entity is in a particular state?
Make the concrete event method of each state call the required (output) action method in response to the event.
*

Moore
How do you activate the FSM outputs if they are produced only at the state entry, and each state has a specific set of outputs?
Implement an output method in each state that calls the required actions. Make the state transition mechanism call the output method of the next upcoming state.
*

Hybrid
What do you do if some FSM outputs are activated on events and some other outputs are activated as result of being in a particular state only?
Make the event method of each state produce the event-dependent outputs and make the state transition mechanism call an output method of the upcoming state to produce the state-dependent output.
*

Exposure
Exposed State
You want to allow other external entities in your application to know of your entity's state and have access to call some of the state's methods.
Provide a method that exposes the state of the entity and allows access to the current state.
[Dyson+98]

Encapsulated State
Your FSM should follow a sequence of state changes that should not be changed by other application entities. How can you ensure no state changes are enforced to your entity?
Encapsulate the current state inside the entity itself and keep the state reference as a private attribute. Only the entity itself can change its state by handling the events causing the state change but still delegate the behavior implementation to the current state.
*

State Instantiation
Static State Instantiation
Your application is small and it has few states. Speed is a critical issue in state transitions. How do you instantiate your entity's states?
Create instances of all possible states on the entity instantiation. Switch from current to next state by altering the reference to the next state
[Martin95]

Dynamic State
Your application is large and you have too many states. How do you instantiate the states in your application?
Don’t initially create all states, make each state knowledgeable of the next upcoming states. Create instances of upcoming states on state entry and delete them on state exit.
*

Num_States : int

set_entity_state (New_State : AState*)

$ Entity_Ref : Entity_State*

Event1()

NextStates : AState**

NextStates : AState**

Pass

State1

set_entity_state (New_State : AState*)

Failed

Event2()

Coin

Event1()

Coin

State Transition

Structure

Extends

Machine Type

State Instantiation

X

Extend (Inheritance)

Motivates

Contradicts

Is classified as

X

X

X

Dynamic State Instantiation

Static State Instantiation

Hybrid

Moore

Meally

Change State

Pass

Fixed

Event1()

Entity_Ref

Event2 ()

Event1 ()

Action2()

AState

Entity_Ref

UpdateState (New_State : AState*)

Entity_State : AState*

Entity

Entity_State

X

Exposure

States Layer

Exposed �State

Encapsulated State

Owner Driven Transitions

Action1()

State Driven Transitions

Interface Organization

Failed

UpdateState (New_State : AState*)

Layered Organization

State Object

Event

Basic FSM

Locked /LampOFF

Broken /LampON

Interface Layer

Unlocked /LampOFF

Behavior Layer

Action2 ()

*

Action1()

Event2()

*

*

Num_States : int

$ Entity_Ref : Entity_State*

Action2 ()

Action1()

Event2 ()

AState

State3

Event2()

Event1()

AState

Entity_State : AState*

Entity

Entity_State

Event1 ()

State2

Event2()

State3

State1

Event2()

Event1()

State2

* In this example, the number of states are small and hence static instantiation is more suitable, however, we used this simple example for illustration purpose.

* Addressed in this paper

*

Application

Environment

Action

An Entity

Entity_State : AState*

Entity_Interface

Entity_State

Event2 ()

State3

Event2 ()

Event1 ()

State2

Event1 ()

State1

Lock ()

Fixed ()

Failed ()

Coin ()

Pass ()

set_my_entity (Coin_Machine*)

AState*)

set_entity_state (New_State :

NextStates : AState**

Num_States : int

$ Entity_Ref : Coin_Machine*

AState

UpdateState (New_State:AState*)

Machine_State : AState*

Coin_Machine

Machine_State

Coin ()

Failed ()

Pass ()

Unlocked

Coin ()

Failed ()

Pass ()

Locked

Fixed

Broken

Pass

Failed

Pass

Fixed

Coin

Coin

Failed

Unlocked

Locked

Broken

Unlock ()

Alarm ()

*

*

Entity_Ref

Broken

Fixed

Locked

Pass ()

Failed ()

Coin ()

Unlocked

Pass ()

Failed ()

Coin ()

Machine_State

CoinMachine_Interface

Machine_State : AState*

Event_Handler (Event)

UpdateState (New_State:AState*)

AState

$ Entity_Ref : CoinMachine_Interface*

Num_States : int

NextStates : AState**

set_entity_state (New_State:AState*)

Actions

set_interface (Interface *)

Pass ()

Coin ()

Failed ()

Fixed ()

Lock ()

Unlock ()

Alarm ()

*

*

Entity_Ref

Events

State1

State2

StateN

Entity_State

Interface

Entity_State : AState*

Event_Handler (Event)

UpdateState (New_State : AState)

AState

$ Entity_Ref : Interface *

Num_States : int

NextStates : AState**

set_entity_state (New_State:AState*)

Actions

*

*

Entity_Ref

Lock ()

Unlock ()

Alarm ()

Thankyou ()

Outoforder ()

Inorder ()

Events

Pass ()

Coin ()

Failed ()

Fixed ()

Broken

Fixed()

Locked

Pass ()

Failed ()

Coin ()

Unlocked

Pass ()

Failed ()

Coin ()

Entity_State

Interface

Entity_State : AState*

Event_Handler (Event)

UpdateState (New_State : AState*)

AState

$ Entity_Ref : Interface *

Num_States : int

NextStates : AState**

set_entity_state (New_State : AState*)

set_interface (Interface *)

*

*

Entity_Ref

Broken

Locked

Unlocked

Failed / "Outoforder"

Coin / ""

Coin / "Thankyou"

Pass / "Alarm"

Fixed / "Inorder"

Failed / "Outoforder"

Pass / ""

Actions

Lock ()

Unlock ()

Alarm ()

Thankyou ()

Outoforder ()

Inorder ()

Events

Pass ()

Coin ()

Failed ()

Fixed ()

Broken

Locked: AState*

Fixed ()

Locked

Broken : AState *

UnLocked : AState*

Pass ()

Failed ()

Coin ()

Unlocked

Broken : AState*

Locked : AState*

Entity_Ref

Pass ()

Failed ()

Coin ()

Machine_State

CoinMachine_Interface

Machine_State : AState*

Event_Handler (Event)

UpdateState(New_State)

AState

$ Entity_Ref : CoinMachine_Interface *

Num_States : int

NextStates : AState**

set_entity_state (New_State :

AState*)

set_interface (Interface *)

Output ()

*

*

*

Entity_Ref

*

CreateUpcomingStates ()

Thankyou ()

Alarm ()

Unlock ()

Lock ()

Fixed ()

Failed ()

Coin ()

Pass ()

set_interface (Coin_Machine *)

AState*)

set_entity_state (New_State :

NextStates : AState**

Num_States : int

$ Entity_Ref : Coin_Machine*

AState

UpdateState (New_State :

Entity_State : AState*

Coin_Machine

Entity_State

DeleteUpcomingState(AState*)

CreateUpcomingStates ()

Coin ()

Failed ()

Pass ()

Unlocked

DeleteUpcomingState(AState*)

CreateUpcomingStates()

Coin ()

Failed ()

Pass ()

Locked

DeleteUpcomingState(AState*)

CreateUpcomingStates()

Fixed ()

Broken

DeleteUpcomingState(AState*)

Event_Handler(Event)

NextStates

Broken

Fixed

Locked

Pass ()

Failed ()

Coin ()

Unlocked

Pass ()

Failed ()

Coin ()

Machine_State

Coin_Machine

Machine_State : AState*

AState

Pass()

Coin()

Failed ()

Fixed ()

Lock ()

Unlock ()

Alarm ()

Thankyou ()

NextStates

NextStates

NextStates

NextStates

NextStates

Output ()

Output ()

Output ()

NextStates

NextStates

1
1

